Sunday, December 24, 2017

Winds keep changing as warming continues

November 2017 was 0.87 degrees Celsius warmer than the mean 1951-1980 November temperature, as above image shows. The last three Novembers — 2015, 2016, and 2017 — are the three warmest in the entire modern record. The warmest month of November happened in 2015 (+1.03°C) when there was a strong El Niño, while we're currently in a La Niña period.

On the image below, cyclonic winds on December 21, 2017, are visible near the Philippines and Vietnam. Near the Philippines, 3-hour precipitation accumulation was as high as 121.6 mm or 4.79 in (at green circle). As a BBC report describes, Tropical Storm Tembin made landfall in the southern Philippines on December 22, 2017, causing flash flooding and mudslides. More than 180 people are reported to have been killed, as the tropical storm swept through Mindanao island, with dozens more missing.

A week earlier, Tropical Storm Kai-Tak hit the central Philippines, killing dozens. The region is still recovering from Typhoon Haiyan, which killed more than 5,000 people and affected millions in 2013.

The winds are fueled by high sea surface temperatures. Above image shows that, on December 21, 2017, sea surface temperatures were as high as 31.7°C or 89°F north of Australia. In line with rising temperatures caused by global warming, sea surface temperature anomalies are high across the oceans, as the image below illustrates.

As above image also shows, the sea surface was relatively cold at locations indicative for El Niño (depicted as four El Niño regions on the right).

The image below shows El Niño forecast plumes indicating that we're currently in a La Niña period, and that temperatures are on the rise.

In conclusion, just like the rise in temperatures is currently masked by a La Niña period, the return to a new El Niño period will further strengthen the rise.

This strengthening of winds is what can be expected in a warmer world. Above image shows a wavy Northern Polar Jet Stream combine with the Northern Subtropical Jet Stream to reach speeds as high as 401 km/h or 249 mph.

As the jet stream becomes more wavy and extends over the Arctic, more warm air and water gets carried into the Arctic, further speeding up warming, as also discussed at The Arctic is changing the Jet Stream - Why This Is Important.

The importance of Arctic warming was also discussed in the recent post Warming is accelerating. Changes to the Jet Stream can cause a lot more heat to be brought into the Arctic, through both the Bering Strait and the Fram Strait. This image below shows wind through the Bering Strait reaching speeds as high as 135 km/h or 84 mph.

The combination image below shows the Jet Stream extending over the Arctic Ocean and remaining in place for days, reaching speeds as high as 206 km/h or 128 mph. Such 'blocking' patterns can cause a lot of heat to be brought into the Arctic atmosphere, as well as into the water of the Arctic Ocean. The image in the left-hand panel indicates that temperature anomalies over the Arctic Ocean could be as high as 30°C or 54°F.

[ click on images to enlarge ]
As the temperature difference between the North Pole and the Equator decreases, the Jet Stream becomes more wavy, at times extending deep over the continents and bringing cold air to the south. This further increases the (already high) temperature difference between land and ocean, further speeding up cyclonic winds that move over the oceans toward the North Pole and that carry warm water and air toward the Arctic Ocean. The image below shows a forecast for January 1, 2018.

As sea ice keeps declining, ever less sunlight gets reflected back into space. The image below shows the decline in global sea ice area over the years.

The image below shows the average year-to-date Arctic sea ice volume (PIOMAS data).

This further confirms the updated trend analysis of the NASA temperature anomaly below.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


• Climate Plan

• Warming is accelerating

• The Arctic is changing the Jet Stream - Why This Is Important

• NASA: November 2017 temperature news release

• BBC: Philippines Tropical Storm Tembin kills 180 on Mindanao

• NOAA: Four El Niño regions

• ECMWF: El Niño forecast plumes

• 10°C or 18°F warmer by 2021?

• Abrupt Warming - How Much And How Fast?

• Accelerating growth in CO₂ levels in the atmosphere

• High methane levels over the Arctic Ocean on January 14, 2014

• Feedbacks

• Extinction

• Methane Erupting From Arctic Ocean Seafloor

• Warning of mass extinction of species, including humans, within one decade

Sunday, December 17, 2017

Fires threaten Santa Barbara

New mandatory evacuation orders have been issued for the areas of Montecito, Summerland and some parts of Santa Barbara city, emergency officials said.

Above graph shows carbon monoxide (CO) and carbon dioxide (CO₂) levels from December 5 - 20, 2017, while the map below shows the location of the measurements (and forecasts).

The graph shows levels at one location and for one time of day (00:00 UTC for CO, respectively 01:30 UTC for CO₂). On December 11, 2017, at this location, but at 22:30 UTC, CO levels were 55639 ppb and CO₂ levels were 898 ppm, as illustrated the combination image below (left panel).

The right panel of the image below shows that CO₂ levels were as high as 922 ppm on December 7, 2017, at 01:30 UTC at a slightly different location. No CO₂ measurements were available for December 9 and 10, 2017, but given that levels of CO₂ and CO typically go up and down hand in hand, CO₂ may have peaked at well over 1000 ppm on December 9, 2017, possibly exceeding the 1229 ppm CO₂ measured in Montana on July 22, 2017.

Such fires look set to cause increasing amounts of emissions, speeding up warming of the atmosphere. These fires were fueled by extremely dry, hot and strong winds lasting for many days. Global warming is behind all these conditions. Not only does more heat translate into higher temperatures and stronger winds, the decreasing temperature difference between the Arctic and the Equator is also increasing the intensity and duration of more extreme weather events such as storms and droughts. A record 129 million trees on 8.9 million acres have died in California due to drought and bark beetles infestation.

“For the first time in history, on December 7th, the Cal Fire elevated the fire threat to purple for San Diego County, warning that the weather conditions presented an extreme risk of fire for San Diego,” California Governor Jerry Brown wrote in a request for federal emergency assistance. “Fire officials predict extreme winds of up to 80 miles per hour, equal to the wind speed of a category one hurricane.”

The following is an extract from the California Scoping Plan 2017:
In California, as in the rest of the world, climate change is contributing to an escalation of serious problems, including raging wildfires, coastal erosion, disruption of water supply, threats to agriculture, spread of insect-borne diseases, and continuing health threats from air pollution. The drought that plagued California for years devastated the state’s agricultural and rural communities, leaving some of them with no drinking water at all. In 2015 alone, the drought cost agriculture in the Central Valley an estimated $2.7 billion, and more than 20,000 jobs. Last winter, the drought was broken by record-breaking rains, which led to flooding that tore through freeways, threatened rural communities, and isolated coastal areas. This year, California experienced the deadliest wildfires in its history. Climate change is making events like these more frequent, more catastrophic and more costly.

The situation is dire and calls for comprehensive and effective action as described at the Climate Plan.


• Climate Plan

• Wildfires

• Extreme weather is upon us

• 10°C or 18°F warmer by 2021?

• Abrupt Warming - How Much And How Fast?

• Accelerating growth in CO₂ levels in the atmosphere

• Feedbacks

• Warning of mass extinction of species, including humans, within one decade

• Turning forest waste into biochar